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solution. Many of these questions could be probed by 
electrochemical methods, which as yet have been un- 
derexploited. 

Little is known of the reaction of radical cations with 
other reagents, but the examples described here in 
which cyclobutadiene radical cations are formed from 
acetylenes, the biphenyl radical cation from benzene, 
azulene radical cations from arylacetylenes, and 
Dieb-Alder dimers from dienes suggest that they may 
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have a considerable potential in organic synthesis, and 
it may be possible to take advantage here of differences 
in the orbital symmetry requirements of pericyclic re- 
actions involving RH and RH’+. 

W e  express our grateful thanks to  all our colleagues whose 
names are given in  the references, fo r  their hard work and en- 
thusiasm as they shared with us the excitement of discovery. 
Much of this work was supported by  grants from the Science 
and Engineering Research Council. 
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Introduction 
First, I want to express my appreciation for the 

unexpected honor of receiving the 1984 Hildebrand 
Award. Any American Chemical Society award is a 
great honor, but for me with my long association with 
Joel Hildebrand this one is especially pleasing and ap- 
propriate. 

My own interest in phase equilibria started with my 
Princeton Ph.D. research on high polymer so1utions.l 
Unlike most scientists, I progressed (or retrogressed) 
from polymers to simpler and simpler systems, like 
mixtures of methane and krypton2 

My long association with Joel Hildebrand started in 
1946, when I started what became 2 years of a post- 
doctoral appointment; that association covered nearly 
all of my scientific life, but only a small fraction of his! 
Working with him on the third edition of Solubility of 
Nonelectrolytes whetted my interest in phase diagrams. 

Hildebrand used his “regular solution” model to in- 
terpret the behavior of solutions and, in particular, to 
explain solubility of nonele~trolytes ,~~ an important 
example of phase equilibrium. This model combines 
the assumption of an ideal entropy of mixing at  con- 
stant volume with a kind of volume-fraction random- 
mixing formulation of the constant-volume energy of 
mixing, resulting in a simple equation for the molar 
Gibbs free energy of mixing AGmM of a binary mixture 

AGmM = -TAsm,ideal + mm,constant volume,random 
= RT(xl In x1 + x 2  In x2)  + Vm0K&& (1) 

where x1 and x 2  are the mole fractions of the two com- 
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ponents in the mixture and c#q and & are the corre- 
sponding volume fractions, defined as xlVlo/Vmo and 
xzVzo/Vmo, respectively. VIo and V20 are the molar 
volumes of the two pure liquids, and Vmo = xlVlo + 
x2VZ0. The factor K is a constant, essentially the energy 
(per unit volume) of making 1-2 pair interactions by 
breaking 1-1 and 2-2 pair interactions. If the unlike 
(1-2) interaction energy can be written as the geometric 
mean of the like (1-1 and 2-2) interaction energies, a 
further simplification results: 

K (61 - 62)’; 6i = (AE,o/Vio)1/2 (2) 

Here the 6;s are the Hildebrand “solubility parameters”, 
calculated as the square roots of the energies of va- 
porization per unit volume of the pure liquids. 

It has long been recognized that eq 1 is not entirely 
self-consistent. In order to produce a nonzero energy 
of mixing, there have to be differences in the energies 
of interaction of 1-1, 1-2, and 2-2 nearest-neighbor 
pairs; if so, the probabilities of finding the different 
pairs will not be exactly random, and the entropy of 
mixing cannot be exactly ideal. The corrections nec- 
essary to make eq 1 self-consistent are frequently rel- 
atively small and are therefore often neglected. The 
simple eq 1, even with the further simplification of eq 
2, fits approximately a wide variety of nonpolar non- 
electrolyte mixtures. 

The earliest substantial attempts to account for 
equilibrium between phases came from van der Waals 
and other members of the Dutch school of chemical 
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physics and physical chemistry, with applications to 
binary mixtures starting in the first decade of the 20th 
century. van der Waalss seems not to have actually 
calculated many binary phase diagrams; most of his 
papers lack useful figures. van Laar: on the other hand, 
reported many calculations of phase diagrams, covering 
many of the types that have been rediscovered by others 
since. The calculations were all by hand, so the dia- 
grams lacked detail and were sometimes inaccurate. 
Everything was based upon the van der Waals equation 
of state; with the eclipse of that equation, discarded by 
some as “utterly worthless”, much of this fine early work 
was almost universally forgotten. 

However, my interest in what Griffiths’O has called 
“global phase diagrams” really started only about 1961 
when I learned about lower critical solution phenomena 
in hydrocarbon mixtures (e.g., methane + hexane, first 
studied by Davenport and Rowlinson’l). For a short 
time a satisfactory explanation for these unexpected 
observations seemed elusive, and during this period I 
tried to account for them using corresponding-states 
theories, but the conclusions to be drawn depended 
much too sensitively upon the way in which the reduced 
quantities were generated. 

Somewhat discouraged, I asked John Rowlinson 
whether it might be worthwhile to see if the van der 
Waals equation for mixtures, which would yield unam- 
biguous results given a set of a’s and b’s, might yield 
such lower critical solution temperatures. He encour- 
aged me; I tried it and found what I was looking for. 
In fact, van Laargc had found it already in 1906 as I 
would have discovered if I had known then where to 
look and how to interpret what he said! 
A Slightly Generalized van der Waals Equation 
for Fluid Mixtures 

A few years ago I always had to preface a talk by 
trying to answer the question “Why the van der Waals 
equation? Isn’t it utterly outdated and useless?” That 
introduction is no longer necessary now that the 
equation has undergone a renaissance, primarily be- 
cause of the belated recognition that the structure of 
liquids and liquid mixtures, and hence their entropy, 
is determined primarily by the repulsive forces between 
molecules. Joel Hildebrand, with his great physical 
intuition, had known this all along. 

The original van der Waals equation is 
p = RT/(V, - b)  - a/Vm2 (3) 

where the ideal-gas relation between the pressure p ,  the 
molar volume V,, and the thermodynamic temperature 
T i s  modified to allow for the hard-core volume of the 
molecules (i.e., their repulsion), expressed in the con- 
stant b, and the attraction between molecules, expressed 
in the constant a. 

There are now far more complicated equations of 
state for liquids, ones that fit the thermodynamic 
properties of liquids, or at  least those of liquid argon, 
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far better than does the van der Waals equation. One 
may fit each isotherm by varying the hard-sphere di- 
ameter in a perturbation treatment of the hard-sphere 
fluid. (van der Waals and van Laar played this game 
too, with temperature-dependent a’s and b’s.) 

I do not quarrel with these treatments or with the 
even more empirical methods used by engineers. But 
Joel Hildebrand taught me to try to keep things simple. 
I try to apply the principle of Occam’s razor in at- 
tempting to develop global models of phase equilibria. 
I am not interested in fitting the fine details of any 
particular system; it will be a long time before we have 
theories of liquids and liquid mixtures so good that the 
experimental thermodynamicist can shut up shop. I 
want to see how far the simplest reasonable models can 
account qualitatively for what one observes. 

We have only started to understand the enormous 
diversity of phase equilibria in mixtures that can be 
deduced from what we call a “generalized van der 
Waals-like equation”, written in the form 

pV,/RT = 1 + cf(b/V,) - a/(RTV,) (4) 

The parameters a and b have the usual van der Waals 
meaning, except that for mixtures they are functions 
of the mole fractions. The parameter c, first introduced 
by Prigogine12 but appearing here in a form suggested 
by Beret and Prausnitz,13 adds a third dimension to a 
corresponding-states treatment; it allows for the entropy 
differences produced by a chain molecule with internal 
degrees of freedom. 

The equation for the pressure can be integrated to 
yield the Helmholtz free energy; then, by adding a term 
for ideal mixing, one obtains an equation for the molar 
Helmholtz free energy A, of a binary mixture: 
A,(T,V,,x) - x1A1’(T,Vm’) - x2A2’(T,Vm”) = 

-RT In (V,/Vmo) - RTcg(b/V,) - a/V, + 
RT(xl In x1 + x 2  In x 2 )  ( 5 )  

Here the Aio% are the molar Helmholtz free energies 
of the pure fluids in their ideal-gas state at  molar vol- 
ume V,’, x1 and x 2  are the mole fractions of the two 
components, and the function g(b/  V,) is just an inte- 
gral of the function f in eq 4. The final term in eq 5 
is the combinatorial free energy of ideal mixing. An 
alternative for this in the dense fluid mixture would be 
to substitute the Flory expression14 for mixing chains 
of different length; one can do this by adding to eq 5 
the extra term RT[q In bl + x2  In b2 - In (xlbl + x 2 b 2 ) ] .  

Two of the simplest forms for g(b/ V,) are that of the 
original van der Waals equation and a modification that 
I suggested some years ago;15 a third is that derived 
from the widely used equation of Carnahan and Star- 
ling? 
van der Waals: g = In (1 - b/V,) (64  

Scott: g = 2 In (1 - b/2Vm) (6b) 
Carnahan and Starling: 

g = (b/V,)(l - 3b/16Vm)/(1 - b/4Vm)2 ( 6 ~ )  
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Equation 6b has no real theoretical justification what- 
soever; it does, however, fit the properties of the hard- 
sphere fluid (a = 0) and those of real fluids like argon 
much better than the van der Waals eq 6a does. (In- 
deed, although eq 6c fits the hard-sphere fluid very well, 
when it is substituted into eq 4 and 5 it fits some of the 
properties of argon less well than eq 6b does.) 

One final feature remains to be added, a set of pre- 
scriptions for a, b, and c. The usual ones are either 
linear or quadratic: 

(7) 

(84  

a = xtall + 2x1xs12 + x22a22 

b = xlbl  + x2b2 

or 

b = x12bl + 2x1x2(b11/3 + b21/3)3/8 + x22b2 (8b) 

c = X l C l  + x2c2 (9) 

Equation 8a for b is that originally suggested by van der 
Waals and seems appropriate for rods or chain mole- 
cules; eq 8b incorporates the “Lorentz combining rule” 
(addition of radii of spheres) and is more nearly ap- 
propriate for globular molecules. Most of our explor- 
ation of global phase diagrams has utilized the simpler 
combining rule eq 8a with the c’s set equal to 1. (It is 
worth noting that the Hildebrand equation (1) reduces 
to a van der Waals binary-mixture equation with eq 8a 
if one sets the Vio% equal to the bls.) 

In our treatment of van der Waals phase diagrarn~~~-~~ 
Peter van Konynenburg and I introduced some reduced 
parameters to describe the binary interactions: 

4 = (b2 - bl)/(b2 + bl) = (VC2 - Vcl)/(Vc2 + Vel) 
(10) 

0 3 0 2  - Pcl) / (Pc2 + Pcl) (11) 

(a22/b22 - %2/blb2 + all/b12)/(a22/b22 + a11/h2) 

I = (a22/b22 - all/b12)/(a22/b22 + all /bt)  = 

A =  

(12) 
For van der Waals-like equations, the parameter 4 
measures the relative difference in size of the two 
molecules and is related to the difference in critical 
volumes of the two pure fluid components; similarly, 
the parameter I measures the relative differences in 
“internal pressures” and is related to the difference in 
critical pressures of the two fluids. The parameter A 
is a measure of the magnitude of the (low-temperature 
high-density) enthalpy of mixing; in the absence of a 
nonideal configurational term, it is a measure of the 
magnitude of the deviation from ideal-solution behavior 
at low temperatures and high densities. 

Figure 1 shows what we call the ”master diagram” for 
mixtures of molecules of equal size (4 = 0). First, we 
see the usefulness of the definitions of 5 and A; as long 
as all the a’s and b’s are positive (and negative values 
seem physically unreasonable), the diagram is bounded 
at the top by A = 1 and on the sides by I = fl. For 

(16) Carnahan, N. F.; Starling, K. E. J. Chem. Phys. 1969,51, 635. 
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(18) Scott, R. L.; van Konynenburg, P. H. Discuss. Faraday Soc. 1970, 

(19) van Konynenburg,.P. H.; Scott, R. L. Philos. Trans. R .  SOC. 
49, 87. 
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Figure 1. ‘Master diagram” for types of phase diagrams for 
binary mixtures of molecules of equal size (E  = 0). For explanation 
of types I-V, see text and Figure 2. The dashed half-circle is the 
locus of the geometric mean aI2 = (alla22)1/2. 

Figure 2. Pressure-temperature projections of p,T,x phase di- 
agrams for the five types of van der Waals phase diagrams shown 
on the “master diagram” of Figure 1. The solid lines are the vapor 
pressure curves of the pure Components, the dashed lines are 
three-phase (LI-b-G) lines, and the dotted lines are critical lines. 
For a discussion of type VI, see text. 

f = 0 the diagram is symmetrical around the t = 0 
vertical axis. The diagram shows the range of values 
of I and A over which five major types of binary-fluid 
phase diagrams may occur. These five types are most 
easily distinguished by the number and character of the 
critical lines, shown in their p,T projections in Figure 
2. Critical lines may end in various ways, at the one- 
component gas-liquid critical points Cl and C2 or at the 
limiting upper critical solution point C, (at p = 03 and, 
for f = 0, at x = 1/2) of a close-packed (V, = b)  
“liquid-liquid” system at infinite pressure. In addition, 
critical lines may terminate on the ends of three-phase 
lines (Ll-L2-G) at upper or lower critical end points. 

These five types, and subdivisions thereof based upon 
the presence or absence of azeotropes or heteroazeo- 
tropes and the presence or absence of a minimum 
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pressure along a critical line, include all but one of the 
kinds of binary-fluid phase diagrams known to the 
chemist or chemical engineer. Moreover, although 
neither the phase diagrams nor the boundaries on the 
master diagram are quantitatively correct, they are in 
surprisingly good qualitative agreement with what is 
known from experiment. 

The exception is the binary-fluid phase diagram for 
systems with low-temperature, lower critical solution 
phenomena (e.g., water + triethylamine), a type that 
has sincemI2l been labeled VI. All such systems involve 
hydrogen bonding and obviously violate the spirit of a 
“random-mixing” model like the van der Waals one. 
(An example of a p,T projection for type VI is shown 
in Figure 2; there are several variants.) 

Of special importance in Figure 1 is the half-circle 
dashed line representing the locus of the geometric 
mean for a12 [i.e., (alla22)1/2]; this Berthelot “combining 
rule” (substantially equivalent to that which yields the 
Hildebrand solubility parameter eq 2) fits, although 
only approximately, many binary mixtures. The ma- 
jority of systems will be found in a band around this 
line, and systems with coordinates far from this line will 
be rare. 

In the center of the master diagram, far from this 
geometric-mean line, is an especially complex “shield 
region”, where the phase diagrams have additional 
critical lines and three-phase lines. This was first dis- 
covered in a three-component system by Furman, 
Dattagupta, and GriffithdO and later found by Furman 
and Griffiths22 for a van der Waals binary mixture; we 
missed this feature in our earlier description of the 
master diagram. Whether such systems will ever be 
found experimentally may depend upon how far the 
shield region moves toward the geometric-mean line for 
systems of unequal size. 

In real systems at  low temperatures solid phases in- 
tervene to obscure the (metastable) fluid behavior of 
binary systems. Because of this, it is not always certain 
whether a system is really type I; it may have a type 
I1 phase diagram that is truncated by a solid phase that 
appears above the temperature of the liquid-liquid 
phase separation. A similar ambiguity exists with ap- 
parent type V systems thay may really be type IV. In 
1973 Eric D i ~ k i n s o n ~ ~  used the van der Waals equation 
to support our inference that close below the melting 
curve in the system methane + n-hexane lies a meta- 
stable liquid-liquid critical point (near xkue = 0.8 and 
T = 150 K); in our view this mixture corresponds to a 
positive A and should thus be classed as type IV. 
Tricritical Phenomena 

I turn now to a special class of phase equilibria, that 
found at or near tricritical points, phenomena that my 
colleague Chuck Knobler and I, with our two research 
groups, have been studying experimentally for nearly 
a decade. In principle, a tricritical point is a point at  
which three phases simultaneously merge into one 
phase, just as an ordinary critical point is where two 

(20) Clancy, P.; Gubbins, K. E.; Gray, C. G. Faraday Discuss. Chem. 
SOC. 1978, 66, 116. 

(21) Rowlinson, J. S.; Swinton, F. L. Liquids and Liquid Mixtures, 3rd 
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(22) Furman, D.; Griffths, R. B. Phys. Rev. B: Solid State 1978,17, 
1139. 

(23) Dickinaon, E.; Knobler, C. M.; Scott, R. L. J. Chem. Soc., Faraday 
Trans. I ,  1973,69, 2179. 
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Figure 3. Schematic representation of the behavior of a closed 
binary or ternary system in the vicinity of a tricritical point. As 
the temperature is raised, the system goes from two phases ( a  
+ Py)  to three phases (a + p + y) to two phases (cup + y). The 
dashed line is the critical interface. 

phases merge into one. However, that is not what one 
observes in the laboratory if one increases the tem- 
perature of a closed system along a path that passes 
through a tricritical point. 

It is easier to explain an unsymmetrical tricritical 
point (the commoner kind in fluid mixtures) by showing 
what happens along a constant-composition, constant- 
density path near a tricritical point. If one fills a con- 
stant-volume vessel with a type IV mixture (for exam- 
ple, methane + n-hexane) at an appropriate composi- 
tion and density, one observes at low temperatures two 
phases with one interface separating them (Figure 3). 
With increasing temperature a second interface appears 
(at a lower critical end point, an LCEP) as one goes 
from two phases to three. At a higher temperature the 
first interface disappears (at an upper critical end point, 
a UCEP), and one is back to two phases. If one could 
vary the magnitude of the binary interaction continu- 
ously (by changing A or { in the master diagram, Figure 
11, one could move to the boundary between the type 
IV and type I1 regions. That boundary is in fact the 
locus of tricritical points; in terms of the p,T projections 
of Figure 2 and the schematic diagrams in Figure 3, the 
tricritical point is precisely where the three-phase region 
has just shrunk to nothing. 

We had in fact calculated tricritical points, and had 
even made experimental studies in the vicinity of a 
tricritical point, before we had ever heard of the con- 
cept. Figure 4 is a diagram from Peter van Konynen- 
burg’s 1968 dis~ertation,~’ illustrating the disappearance 
of the three-phase region as one varies the ratio a22/a11 
(along a particular A,{ path in the calculated van der 
Waals master diagram). Figure 5 is a plot of the ex- 
perimental measurements he made of the locus of upper 
and lower critical end points in a series of methane + 
C6-hydrocarbon binary and ternary  system^.^^,^^ 

Figure 6 is from the experimental study by Jeff 
Creek24 of tricritical phenomena in methane + 2,2-di- 
methylbutane + 2,3-dimethylbutane. This system is 
one we call “quasi-binary” because the two “solute” 
components are so similar that we can regard them as 
constituting a single “solute” of average properties. The 
Phase Rule imposes the thermodynamic condition that 
an unsymmetrical tricritical point can occur only in 
systems of three or more components. We can in effect 
“cheat” on this requirement with our quasi-binary 
systems because the relative proportions of the two 
“solutes” are almost exactly the same in all coexisting 
phases. Not only does this make the preparation of 
near-tricritical mixtures much easier, but it permits us 
to model tricritical behavior with van der Waals or van 
der Waals-like binary mixtures by simply varying the 
parameter {or A. 

(24) Creek, J. L.; Knobler, C. M.; Scott, R. L. J. Chem. Phys. 1981, 74, 
3489. 
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Figure 4. van der Waals calculated phase diagrams: (a, top) ‘lhe 
disappearance of the three-phase region characteristic of type IV 
binary systems as a function of the ratio a22/a11 (effectively 
equivalent to the parameter <). (b, bottom) T,x projections of 
the two three-phase lines and the critical lines occurring in a type 
IV binary system. From ref 17. Reprinted with permission from 
ref 24. Copyright 1981 American Institute of Physics. 

Our modeling of tricritical phenomena started of 
course with van Konynenburg’s ~ o r k , ~ ’ J ~  but recently 
we have resumed making similar calculations and in 
much greater detail. Our basic understanding of un- 
symmetrical tricritical points in fluid mixtures derives 
from a very important paper by Griffiths% in 1974. His 
phenomenological theory, a mean-field Landau-type 
treatment, utilizes a sixth-order polynomial for the free 
energy, the simplest form that yields three coexisting 
phases and tricritical points. 

The crossover between normal (“classical”) and 
anomalous (“nonclassical”) behavior occurs at  a di- 

(25) Griffiths, R. B. J. Chem. Phys. 1974, 60, 195. 
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Figure 5. Upper and lower critical-end-point temperatures for 
binary mixtures of methane with various C6 hydrocarbons as a 
function of the solubility parameter 8 of the higher hydrocarbon. 
The solid line is the locus of the experimental critical end points 
of the quasi-binary mixture methane + (2-methylpentane + 2- 
ethyl-1-butene). The dashed l i e  approximates the locus of upper 
critical end points. From ref 24, and based upon measurements 
by van Konynenburg” and by Creek.24 
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Figure 6. Upper and lower critical-end-point temperatures for 
the quasi-binary system methane + (2,2-dimethylbutane + 2,3- 
dimethylbutane). The abscissa is the relative mole fraction of 
2,3-dimethylbutane in the “solute”, 223 = x 2 3 / ( ~ 2 2  + 223). .Re- 
printed with permission from ref 24. Copyright 1981 American 
Institute of Physics. 

mensionality of three for tricritical points rather than 
that of four for ordinary critical points; consequently, 
mean-field theory should yield the correct asymptotic 
behavior (i.e., the approach to the tricritical point 
should be governed by normal mean-field exponents), 
except possibly for some logarithmic corrections and 
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some nonclassical amplitude ratios. The predictions of 
the Griffiths theory about the asymptotic region are 
now confirmed by experiment, at  least in most respects 
(an important remaining problem will be discussed 
later), but the asymptotic theory says nothing about 
more complex behavior outside the asymptotic region. 

This can be illustrated by the three-phase coexistence 
curve (Figure 7) that Jurgen Specovius2‘ measured for 
the binary system ethane + n-octadecane. In the as- 
ymptotic theory this should have twofold rotational 
symmetry about its midpoint, but the curve for the real 
system is obviously rather unsymmetrical. Such un- 
symmetrical curves appear in our van der Waals cal- 
culations, the asymmetry increasing with the distance 
from the tricritical point (as measured by A{ = { -  ct 
on the master diagram); indeed the first such curve 
(Figure 4b) appeared in van Konynenburg’s disserta- 
tion.17 

For any type IV binary or quasi-binary mixture with 
a particular set of intermolecular interactions (i.e., fixed 
[, {, A for the van der Waals model), the three-phase 
region appears as an isolated “monohedron” in a 
three-dimensional T,x, V, diagram or the equivalent 
T,c1,c2 diagram with molar concentrations (Figure 8). 
The three projections of the coexistence curve are two 
S-shaped curves (T,cl and T,cJ and one approximately 
parabolic curve (c1,c2). In the asymptotic sixth-order 
theory the S-shaped curves are symmetrical and the 
parabola reduces to a straight line. 

Ian Pegg27 calculated a large number of these three- 
phase curves and has fitted the temperature, pressure, 
and composition differences to power series in (An112. 
The success of these fits encouraged me to try to extend 
the Griffiths phenomenological theory to higher terms, 
s p e ~ i f i c a l l y ~ ~ ~ ~  with the Gibbs free energy expressed as 
a polynomial truncated at the eighth power of the mole 
fraction x .  (An expansion of the appropriate thermo- 

(26) Specovius, J.; Leiva, M.; Scott, R. L.; Knobler, C. M. J. Phys. 

(27) Pegg, I. L.; Knobler, C. M.; Scott, R. L. J. Phys. Chem. 1983,87, 

(28) Lindh, R.; Pegg, I. L.; Knobler, C. M.; Scott, R. L. Phys. Reu. Lett. 

(29) Scott, R. L. J.  Chem. Phys., in press. 

Chem. 1981,85,2313. 

2866. 

1984,52, 839. 

t I  

c2\ 

Figure 8. A schematic three-phase monohedron in T,cl,c2 space, 
showing two projections T,cl and cl,c2. The third projection T,c2 
is omitted for reasons of clarity. 

dynamic potential in powers of c1 leads to entirely 
equivalent results.) 
Griffiths: G, = 
K [ u ~  + a1Ax + u ~ ( A x ) ~  + u ~ ( A x ) ~  + u ~ ( A x ) ~  + (AX)‘] 

(13) 
extended: 
G, = K[ao + a lAx  + U ~ ( A X ) ~  + u ~ ( A x ) ~  + u ~ ( A x ) ~  + 

From this eighth-order polynomial one obtains a cubic 
equation for the composition of the three coexisting 
phases 
(Ax)3 - 3(Ax)’[(bol + 2 b 2 0 ) ~ ’ / ~  + 2b30ey2 + . . . ] Y ~ / ~  - 

u ~ ( A x ) ~  + (AX)‘ + u ~ ( A x ) ~  + u ~ ( A x ) ~  + ...I (14) 

~ A X [ I  + 2b20ey1/2 + (2bI1 + 6b30 - bolZ - 4bolb20 - 
3b202)Y + ...]Y - [2e - + 6(b11 + 2b30 - 

bolbzo - bzo2)ey + ...]y3i2 = o (15) 
where y is proportional to A{, and 19 = (2T - Tu - 
TL)/ (Tu - TL), a relative temperature that ranges from 
-1 to +1 across the three-phase region between the two 
critical end points (Tu and TL). The parameters bij are 
uniquely related to ratios of the coefficients ai in eq 14. 
The extended theory’s eq 15 accounts almost quanti- 
tatively for the shapes of the unsymmetrical coexistence 
curves. 

Much of what we have observed can be accounted for 
with only one extra correction (i.e., by adding only the 
seventh power of the order parameter to the original 
Griffiths phenomenological expression for the free en- 
ergy). Figure 9a,b shows the fits to the coexistence 
curve for the binary system methane + 2,3-dimethyl- 
butane recently remeasured by Enrique Fernandez- 
Fassnacht and Arthur Wil l iam~on.~~ [Here the com- 
positions (“densities”) are expressed not as mole fraction 
x and molar volume V,  but rather in terms of the al- 
ternative pair, the molar concentrations c1 and c6.1 

The smooth curves shown were constructed by fitting 
compositions of the three conjugate phases at the 
midtemperature T, and, of course, imposing the con- 
dition that the curves end at the critical end-point 
temperatures (but the compositions at the end points 
were not fitted). The only nonzero correction param- 
eter is b20. The curvature at the end points is not quite 

R. L.; Knobler, C. M. J. Chem. Phys., in press. 
(30) Fernandez-Fassnacht, E.; Williamson, A. G.; Sivaraman, A.; Scott, 
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Figure 9. Three-phase coexistence curves for the binary system 
methane + 2,&dmethylbutane: (a) T,cs; (b) T,cl (measurements 
of Fernandez-Fassnacht and Williamsonso). The solid curves are 
fits with the single extra parameter required by the seventh-order 
free energy polynomial. 

right, nor should it be; these are ordinary critical points 
where the coexistence curve is nonanalytic, having an 
approximately cubic shape rather than the parabolic 
shape predicted by any classical (mean-field) treatment. 

Otherwise the fit is remarkably good, considering the 
experimental error bars and the neglect of any sec- 
ond-order corrections (arising from the coefficient b30 
in eq 15), especially so for the T,cl curve where, for most 
of the temperature range, the concentration (although 
not the mole fraction) of methane in the intermediate 
/3 phase exceeds that in the y phase. The agreement 
between the theoretical eq 15 and the experimental 
coexistence curve for the quasi-binary system ethane + (n-heptadecane + n-&decane), studied in detail by 
Cynthia G0h,3~3~~ is even more impressive. (All of these 
temperature-composition curves are of course projec- 
tions of the original monohedron in T,x,Vm or T,c1,c6 
space. A particular projection in the direction of a 
h e a r  combination of x and V,,, or of c1 and c6 generates 
an almost symmetrical curve like that predicted by the 
asymptotic theory.) 

Another feature of interest is what we call the tri- 
critical path. If we fill a sealed tube with a ternary 
mixture at  exactly the tricritical composition and ex- 
actly the tricritical density (i.e., for our quasi-binary 
mixtures, selecting exactly ft, xt, and VmJ, what will be 
observed as the system is heated to the tricritical tem- 
perature and beyond? Three alternatives have been 
suggested: 

(a) At  the tricritical temperature three phases go to 
one phase. Efremova and S h ~ a r t s ~ ~  reported having 
seen this in the system n-butane + acetic acid + water. 

(b) At the tricritical temperature two phases go to two 
different phases; one meniscus disappears just as an- 

(31) Goh, M. C. Ph.D. Dissertation, UCLA, 1985. 
(32) Goh, M. C.; Specoviua, J.; Scott, R. L.; Knobler, C. M. J. Chem. 

(33) Efremova, G. D.; Shvarta, A. V. Zh. Fiz. Khim. 1969, 40, 907 
Phys., in press. 

(Russ. J. Phys. Chem. 1969,40,486]. 

2 
Figure 10. The T,{ “phase diagram” in the vicinity of the tri- 
critical point for a sealed tube at fixed tricritical density pt and 
mole fraction xt. The tricritical point is a t  the confluence of the 
three lines. TIT,, is the ratio of the temperature to the gas-liquid 
critical temperature of pure component 1. Calculated from the 
van der Waals equation for = 0, A = 0. Reprinted with per- 
miasion from ref 28. Copyright 1984 American Institute of Physics. 

other appears. Efremova and Shvarts= reported having 
seen this behavior in the system carbon dioxide + 
methanol + water. 

( c )  Kaufman and G r i f f i t h ~ ~ ~  on the basis of a model 
(designed to fit the experimental data on the system 
water + ethanol + benzene + ammonium sulfate) sug- 
gest that below Tt two phases coexist and that the 
volume of one shrinks precipitously to zero at Tt. 
However, they reported that they “have not been able 
to confirm that this ... is a general feature of the classical 
model”. 

van der Waals ~ a l c u l a t i o n s ~ ~ ~ ~  by Roland Lindh and 
Ian Pegg on a binary mixture at  ft,xt,pt yield the third 
alternative, suggesting that the Kaufman and Griffiths 
result is a fairly general one. Figure 10 shows the T,f 
“phase diagram” for fixed xt and pt. A t  the tricritical rt the system goes from two phases to one; only for f 
greater than ft does one encounter a three-phase region. 

However, for a f very slightly larger than ft, the 
three-phase region is very narrow and a substantially 
larger two-phase region lies above it (see Figure 10). It 
is possible that the other two kinds of behavior, re- 
ported by Efremova and Shvarts, are slightly misin- 
terpreted observations for slightly off-tricritical paths. 
In our experiments on the C2H, + (n-Cl7Hx + n-CI8H38) 
system we have found the one-phase region above the 
two-phase regions, but we have not attempted the al- 
most impossible feat of producing in the laboratory an 
exactly tricritical path. 

Before leaving the subject of unsymmetrical tricritical 
points, I should report on some of our recent work, a 
combination of experimental studies and modeling, that 
casts doubt upon the validity of the “Griffiths first sum 
rule” for light scattering in’ the region of a tricritical 
point. According to this rule36 the light scattering from 
the three conjugate phases a, 0, and y should satisfy 
the following relationship 

(16) 
where x is the susceptibility or “osmotic 

(34) Kaufman, M.; Griffiths, R. B. J.  Chem. Phys. 1982, 76, 1508. 
(35) Lindh, R.; Pegg, I. L.; Knobler, C. M.; Scott, R. L., to be sub- 

(36) Kaufman, M.; Bardhan, K. K.; Griffiths, R. B. Phys. Rev. Lett. 

= X a 1 / 2  + xy1/2 - xg1/2 = 0 

mitted for publication. 

1980,44, 77. 



104 Scott Accounts of Chemical Research 

compressibility”, 1/ ( d 2 G , / d ~ 2 ) T , p .  This result, obtained 
from the asymptotic theory, i.e., from the sixth-order 
polynomial (eq 13) for the free energy G,, is modified 
when this classical theory is e ~ t e n d e d ~ ~ , ~ ~  to eighth 
order; the sum is now not zero, but a constant. On 
carrying the derivation to still higher order, one finds 
21 = 

d8 + d i o ( A 0  + d,16(A03’2 + d12(A02 + O [ ( A S ~ ~ ’ ~ I  
(17) 

Here the coefficients d, are all strictly constant over the 
entire three-phase region; their subscripts denote the 
order of the free-energy polynomial required to produce 
them. Not only is the sixth-order coefficient exactly 
zero (hence the zero of the original Griffiths derivation), 
but so also are those from the seventh and ninth orders. 
Note that the first dependence upon temperature (that 
is, 6 )  occurs in the eleventh-order term. 

The experimental intensities and the experimental 
correlation lengths are directly related to the suscep- 
tibilities by factors (coupling “constants”) that are at 
most power series in Ax. If one derives the experi- 
mental intensity sum X I  or the experimental correlation 
length sum CE by including these factors, these sums 
have exactly the same form as eq 17; only the numerical 
values of the constant coefficients change. 

Experimental measurements of the light scattering 
from the system ethane + n-heptadecane + n-octade- 
cane near its tricritical point, carried out by Ani1 Ku- 
mar37 in David Cannell’s laboratory at  the University 
of California, Santa Barbara, in cooperation with our 
groups in Los Angeles, show a strikingly large variation 
of the experimental sums over a range of A{ where the 
seventh-order extension of the asymptotic theory seems 
sufficient to account reasonably well for the thermo- 
dynamic measurements. The correlation length sum 

is reasonably linear in A{, but the intensity sum X I  
shows a substantial curvature (Figure 11) that may in- 
dicate a divergence at ct. The earlier  measurement^^^ 
on the four-component mixture indicated similar dif- 
ficulties with the sum rule, but those results were 
perhaps less conclusive than ours because of the nature 
of the thermodynamic path that the measurements 
covered. 

It seems hard to avoid the conclusion that these re- 
sults show either that the classical theory-even when 
extended-has failed or that, even as close to the tri- 
critical point as we have come, several terms in eq 17 
are important, a t  least as high as dlz(At)2. The latter 
alternative seems very unlikely. 

I have already mentioned that for tricritical phe- 
nomena the boundary between classical (mean-field) 
behavior and nonclassical (nonanalytic) behavior occurs 
at a dimensionality of three; the tricritical exponents 
should be those deduced from a mean-field theory, 
except very close to the tricritical point where loga- 
rithmic  correction^^^ should be evident. Outside this 
very close region certain amplitude ratios should depart 
from their classically predicted values.40 My UCLA 

(37) Kumar, A.; Chamberlin, R.; Cannell, D. S.; Pegg, I. L.; Knobler, 
C. M.; Scott, R. L. Phys. Reu. Lett. 1985,54, 2234. 

(38) Kim, W.; Goldburg, W. I.; Esfandiari, P.; Levelt Sengers, J. M. 
H. J. Chem. Phys. 1979, 71,4888. Kim, M. W.; Goldburg, W. I.; Esfan- 
diari, P.; Levelt Sengers, J. M. H.; Wu, E.-S. PhyS. Reu. Lett. 1980, 44, 
80. 

(39) Stephen, M. J. Phys. Reo. B: Solid State 1975, 12, 1015. 
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Figure 11. Light-scattering results on quasi-binary systems of 
ethane with mixtures of n-heptadecane, n-octadecane, and n- 
nonadecane: (a) intensity sums X I ;  (b) correlation length sums 
& !n) is the average carbon number in the quasi-binary “solute”. 
Reprlnted with permission from ref 37. Copyright 1985 American 
Institute of Physics. 

collaborators and I believe that these light-scattering 
measurements provide strong evidence for these non- 
classical amplitude ratios, a view buttressed by a very 
recent nonclassical theoretical treatment by Rudnick 
and J a s n ~ w . ~ ~ ~ ~ ~  

the experimental studies 
on multicritical points in fluid mixtures (including the 
symmetrical tricritical points to be discussed in the next 
section). The second review brought the literature to 
1983, but later studies, like our new light-scattering 
measurements, are not included.] 

Symmetrical Tricritical Points 
The last models I want to mention are those for what 

we call symmetrical tricritical points. They bear a 
mathematical relationship to the unsymmetrical tri- 
critical points just described, but the relationships be- 
tween the physical variables are sufficiently different 
that, for the purpose of this discussion, it is not worth 
trying to make the connection. Let us simply consider 

[We have twice 

(40) Fisher, M. E.; Sarbach, S. Phys. Rev. Lett. 1978,41, 1127. Sar- 
bach, S.; Fisher, M. E. Phys. Reu. B: Condens. Matter 1978, 18, 2350; 
1980,20, 2797. 

(41) Rudnick, J.; Jasnow, D. Phys. Reu. B: Condens. Matter 1985,32, 
6087. 

(42) This paragraph contains the only substantive change in our 
thinking since the presentation of the award address in April 1984. At 
that time we already believed that the light-scattering results showed 
evidence that the Griffiths sum diverged, presumably as a consequence 
of nonclassical effects, but a t  that  time we attributed the discrepancies 
to the logarithmic corrections, not to the corrections in amplitude ratios. 

(43) Scott, R. L. In Proceedings of the Eighth Symposium on Ther- 
mophysical Properties, June 1981; American Society of Mechanical En- 
gineers: New York, 1982; Val. I, p 397. 

(44) Knobler, C. M.; Scott, R. L. In Phase Transitions and Critical 
Phenomena; Domb, C., Lebowitz, J. L., Eds.; Academic: London, 1984; 
Val. 9, pp 163-231. 
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Figure 12. Hypothetical phase diagrams for ternary fluid mix- 
tures of d and 1 enantiomers with a third optically inactive fluid: 
(left) ternary diagrams; (right) pseudobinary diagrams for the 
racemic mixture plus the third component. Reprinted with 
permission from ref 43. Copyright 1982 ASME. 

these a different phenomenon in phase equilibria. 
I find it easiest to explain symmetrical tricritical 

points with a hypothetical ternary system composed of 
a pair of enantiomers (optically active d and 1 isomers) 
together with a third optically inert substance. One can 
imagine triangular phase diagrams like those shown in 
Figure 12, necessarily symmetrical around a horizontal 
axis that represents equal amounts of the two enan- 
tiomers. Depending upon the temperature and upon 
the interaction energies, various kinds of phase dia- 
grams can occur, but any symmetrical three-phase re- 
gion will have to shrink in a symmetrical way, so it must 
disappear at  a tricritical point. 

Now suppose that we have a racemic mixture of this 
enantiomer pair so that the overall composition lies on 
the symmetry axis. A pair of mirror-image conjugate 
phases cannot physically separate or even become 
turbid. (They have exactly the same density and ex- 
actly the same index of refraction.) Unless we look for 
thermodynamic anomalies, we will conclude that the 
system is a binary mixture with phase diagrams like 
those on the right-hand side of Figure 12, in which the 
two-phase coexistence curve ends at  a sharp corner 
(essentially the intersection of two straight lines), a 
symmetrical tricritical point. 

These unusual “pseudobinary” phase diagrams were 
derived initially by Meijering45 from a very simple 
“regular solution” model for ternary mixtures. Much 
later Blume, Emery, and GriffithsG deduced the iden- 

(45) Meijering, J. L. Philips Res. Rep. 1950,5,333; 1951,6,183; 1963, 

(46) Blume, M.; Emery, V. J.; Griffiths, R. B. Phys. Rev. A 1971, 4,  
18, 318. 
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tical diagrams from a three-spin model of helium mix- 
tures; the third diagram on the right is substantially 
that found experimentally for the fluid mixture 4He + 
3He. 

Symmetrical tricritical points are also found in the 
fluid mixtures of sulfur with certain solvents. The 
unusual properties of sulfur and its solutions at  elevated 
temperatures have been known since the past century, 
but an understanding of them had to wait for the de- 
velopment of an adequate treatment of polymer solu- 
tions. In pure liquid sulfur a t  a temperature of 432 K 
(159 “C) there is a remarkably sudden onset of the 
formation of very long sulfur chains from the s8 rings 
that predominate a t  lower temperatures. The simple 
model of Tobolsky and Eisenbere7 assumes two chem- 
ical equilibria, one for ring opening and a second for 
chain growth (polymerization): 

S8(r) * *s8*(c) (K,) (18) 

Essential to this treatment is its use of the Flory- 
Huggins free energy for mixing polymers with mono- 
mers (solvent); this requires that, for the equilibrium 
“constant” Kp to be reasonably constant, it must be 
expressed in terms of molar concentrations or volume 
fractions, not in terms of mole fractions. If Kp is ex- 
pressed in terms of molar concentrations, it becomes 
appropriate to assume that it is the same number for 
all n. At 432 K the ring-opening constant is very small 
(ca. 10-l2), but Kp changes continuously from a value 
slightly less than 1 to one slightly greater than 1, and 
it is this that produces the sudden, almost catastrophic, 
appearance of long chains, with thermodynamic be- 
havior very close to that expected for a second-order 
transition. 

In 1965 I extendeda this theory for pure liquid sulfur 
to liquid mixtures of sulfur, adding to the chemical 
equilibria and the Flory-Huggins free energy a Hilde- 
brand “regular-solution” interaction between the solvent 
and the sulfur. The equation KP& = 1, where & is the 
volume fraction of total sulfur, defines a “critical po- 
lymerization line” in the solvent + sulfur phase diagram, 
a temperature a t  which long chains start forming in 
quantity and at  which the viscosity of the solution in- 
creases sharply (Figure 13). If the solvent-sulfur in- 
teraction is large enough, there will be an upper critical 
solution temperature lying below the critical polymer- 
ization line and at  a higher temperature a lower critical 
solution point that lies on the critical polymerization 
line. For still larger interactions the two two-phase 
regions merge and there is no temperature range of 
complete miscibility. 

In most qualitative respects these predictions agreed 
with the then-existing experimental data and with the 
new measurements that we reported 2 years later4Q 
(Figure 14). In two annoying respects, however, theory 
and experiment were not in agreement: (1) for certain 
values of the interaction parameters the theory pre- 
dicted three-phase equilibria (Figure 13d) that have 
never been found, and (2) the calculated coexistence 
curves were sharply pointed at  their junctions with the 
critical polymerization line (i.e., the lower critical so- 

(47) Tobolsky, A. V.; Eisenberg, A. J.  Am. Chem. SOC. 1959,81,780. 
(48) Scott, R. L. J. Phys. Chem. 1965,69, 261. 
(49) Larkin, J. A.; Katz, J.; Scott, R. L. J.  Phys. Chem. 1967,71,352. 
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Figure 13. Calculated phase diagrams for solvent + sulfur 
systems. TI is the (low-temperature) upper critical solution 
temperature, while Tp* is the critical polymerization temperature 
for pure sulfur; & is the volume fraction of total sulfur. The 
dashed line is the critical polymerization line. The different values 
of the ratio T I / T  * correspond to different values of the sol- 
vent-sulfur interckange energy. Reproduced from ref 48. 

lution point) while the experimental coexistence curves 
(Figure 14) were rather flat. Of course, the theory was 
a classical (mean-field) treatment and K1 was taken as 
negligibly small, but these simplifications did not seem 
to be responsible for the discrepancies. 

Anyone who compares Figures 12 and 13 should be 
struck by the similarity; the phase diagrams in the latter 
resemble those in the former, except that the temper- 

Figure 14. Experimental phase diagrams for solvent + sulfur 
systems: (a) triphenylmethane + sulfur; (b) cis-decalin + sulfur. 
The critical polymerization line, unlike that in Figure 13, is here 
drawn solid rather than dashed. Reproduced from ref 49. 

ature scale is upside down. However, in 1965 we had 
never heard of a tricritical point and, although I was 
familiar with some of Meijering's work, I never saw the 
relationship. It took John Wheeler to make the con- 
nection. He, together with Kennedy and Pfeuty,w had 
just found an exact mathematical analogy between the 
formulation of the equilibrium polymerization of sulfur 
and the n - 0 vector model of magnetism. They 
promptly extended5I this n - 0 vector model to sulfur 
solutions, and the mean-field approximation to it 
proved to be identical with my earlier thermodynamic 
theory. 

Since then they have introduced a number of re- 
f i n e m e n t ~ ~ ~  to their theory including (a) the formation 
of very large rings as well as long chains in the region 
above the critical polymerization line and (b) the effect 
of impurities produced by slow chemical reactions be- 
tween solvent and sulfur (which certainly take place in 
the systems we studied experimentally). The effect of 
the impurities is similar to that of greatly increasing K,; 
it can eliminate the three-phase equilibrium, flatten the 
coexistence curve, and even introduce an unsymmetrical 
tricritical point. The flattening of the coexistence curve 

(50) Wheeler, J. C.; Kennedy, S. J.; Pfeuty, P. Phys. Reu. Lett. 1980, 
45, 1748. Wheeler, J. C.; Pfeuty, P. Phys. Reu. A 1981, 24, 1050. 

(51) Wheeler, J. C.; Pfeuty, P. Phys. Reo. Lett. 1981, 46, 1409; J .  
Chem. Phys. 1981, 74,6415. 

(52) Wheeler, J. C.; Petachek, R. G.; Pfeuty, P. Phys. Rev. Lett. 1983, 
50, 1633. Wheeler, J. C. Phys. Reu. Lett. 1984, 53, 174; J. Chem. Phys. 
1984,81, 3635. 
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depends upon the amount of impurity, i.e., the extent 
of the reaction; the degree of flattening that we observed 
in our experiments does seem to correlate qualitatively 
with our estimates of the reactivity. 

It is interesting to note that the experimental dis- 
covery of symmetrical tricritical points in fluid mixtures 
dates from 1967, when Graf, Lee, and R e ~ p y ~ ~  estab- 
lished the correct phase diagram for the helium mixture 
and when we49 determined the phase diagram for tri- 
phenylmethane + sulfur (Figure 14a), including the 
critical polymerization line (which is analogous to the 
superfluid transition line). Neither paper called the 
phenomenon a tricritical point. 

I conclude by returning to the enantiomer diagrams. 
Before anyone can find these pseudobinary ternary 
diagrams, one has to find fluid-fluid phase separation 
in racemic mixtures. It is only very recently that 
thermodynamic measurements have finally given con- 
vincing evidence54 of deviations from ideal-solution 
behavior in fluid mixtures of d-1 isomers. Systems with 
much larger and positive deviations must be found. 
The model exists; substances that will fit it need to be 

(53) Graf, E. H.; Lee, D. M.; Reppy, J. D. Phys. Reu. Lett. 1967,19, 

(54) Atick, Z.; Ewing, M. B.; McGlashan, M. L. J. Phys. Chem. 1981, 
417. 

85, 3300; J. Chem. Thermodyn. 1983,15, 159. 

found. Some think this virtually impossible. But ma- 
croscopic phase separation has to involve the whole 
molecule, not just a few segments, so I hope that con- 
struction of polymer chains from appropriate optically 
active monomers will amplify the monomer effect suf- 
ficiently to produce incompatibility. Only time will tell, 
and it is likely to be a rather long time; but what fun 
it will be to find it! 

It has often been suggested that the study of phase 
equilibria, like the classical thermodynamics upon 
which it is based, is really a 19th century subject far 
from the frontier of modern science. I hope that this 
presentation shows that this is not so, that there is still 
much excitement in this field. Moreover, many new 
types of phase equilibria that are just beginning to be 
understood have not even been mentioned-areas to 
which I have made no contributions at all, but ones that 
are exciting and will continue to excite the next gen- 
eration of physical chemists: liquid crystals, micro- 
emulsions, phase equilibria in two dimensions (surface 
films), and many others. 

Most of the research reported here was supported by the US. 
National Science Foundation. Z also thank the nearly 60 research 
collaborators-students (undergraduate and graduate) ,  post-  
doctoral associates, and faculty colleagues-who have contributed 
to our research over the years. 
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The past 3 decades have witnessed a tremendous 
surge of interest in the photochemistry of organic com- 
pounds in solution. The studies that have been un- 
dertaken have encompassed a wide variety of chromo- 
phores which absorb in the near-ultraviolet (>300 nm) 
and the mid-ultraviolet (200-300 nm) regions of the 
spectrum. As a result, there is general understanding 
of the photochemical behavior of chromophores (e.g., 
carbonyl, phenyl) whose lowest electronic transitions 
lie in these spectral regions. Compounds such as al- 
kenes, acetylenes, cyclopropanes, alcohols, ethers, and 
amines whose chromophores do not absorb in this re- 
gion have been studied by extending their absorption 
by suitable conjugating groups or, where possible, by 
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promotion to their lowest triplet states by sensitization. 
Organic photochemistry in the far-ultraviolet 

(185-214 nm) offers opportunities to study the behavior 
of simple, unsubstituted chromophores in their singlet 
excited states in solution. It also makes possible ex- 
citation of the second upper singlet states of those 
chromophores (e.g., carbonyl) which absorb at  longer 
wavelengths as well. 

Photons of wavelengths in the far-ultraviolet region 
correspond to energies greater than 143 kcalleinstein, 
which is more than adequate to break almost any bond 
in a typical organic molecule. In the gas phase, sec- 
ondary bond homolysis does occur, often randomly, as 
a result of the primary photoproducts being formed 
with excess vibrational energy.l In solution, however, 
irradiation with far-UV light usually results in highly 

(1) See, for example: (a) McNesby, J. R.; Okabe, H. Ada Photochem. 
1964, 3, 157 and references cited therein. (b) Currie, C. L.; Okabe, H.; 
McNesby, J. R. J. Phys. Chem. 1963,67,1494. (c) Lopez, E.; Doepker, 
R. D. Ibid.  1978,82, 753. 
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